题目描述
Outro, means the end. This is the last problem of this contest. So, good luck!
<br/>
Let's call a permutation $p$ of length $n$ "Outro" if the condition $\gcd(i,p_i)=1$ holds for all $i\ (1\le i\le n)$.
Your task is for a given number $n$, construct any one of "Outro" permutation of length $n$ and print it.
- $\gcd(a,b)$ means the greatest common divisor of the two integers $a$ and $b$.
- A permutation of length $n$ means that each integer from $1$ to $n$ occurs exactly once in the sequence.
---
我们将长度为 $n$,且 $1$ 到 $n$ 之间的每个正整数均只出现一次的排列称为“全排列”。
例如,$\{5,2,1,4,3\},\{2,3,1\}$ 就是全排列,而 $\{1,2,2\}, \{3,1\}$ 不是全排列。
现需要构造一个长度为 $n$ 的全排列 $p_1,p_2,\cdots,p_n$,并且需要保证对于 $i\in[1,n]$, $p_i$ 与 $i$ 互质。
两数互质即表示两数的最大公因数为 $1$,即 $\gcd(a,b)=1$。
输出格式
Print $n$ integers in one line, representing the permutation you constructed.
If there are multiple answers, print any of them.
---
输出一个长度为 $n$ 的符合题意的全排列,相邻两数间以空格或换行隔开。