题目描述
How many integer sequences $A=(A_1,\ldots,A_N)$ of length $N$ satisfy all the conditions below?
- $1\le A_i \le M$ $(1 \le i \le N)$
- $|A_i - A_{i+1}| \geq K$ $(1 \le i \le N - 1)$
Since the count can be enormous, find it modulo $998244353$.
### Constraints
- $2 \leq N \leq 1000$
- $1 \leq M \leq 5000$
- $0 \leq K \leq M-1$
- All values in input are integers.