Given a sequence $A$ of $N$ numbers, answer the following $Q$ questions.
- In the $i$\-th question, you are given integers $L_i$ and $R_i$. Is $A_{L_i} \times A_{L_i+1} \times \dots \times A_{R_i}$ a cubic number?
Here, a positive integer $x$ is said to be a cubic number when there is a positive integer $y$ such that $x=y^3$.
- All values in input are integers.
- $1 \le N,Q \le 2 \times 10^5$
- $1 \le A_i \le 10^6$
- $1 \le L_i \le R_i \le N$
Print $Q$ lines.
The $i$\-th line should contain `Yes` if, in the $i$\-th question, $A_{L_i} \times A_{L_i+1} \times \dots \times A_{R_i}$ is a cubic number, and `No` otherwise.
The checker is case-insensitive; output can be either uppercase or lowercase.