题目描述
You are given integer sequences of length $N$: $A=(A_1, A_2, \dots, A_N)$ and $B=(B_1, B_2, \dots, B_N)$.
You may perform the following operation any number of times:
- Choose an integer $i\ (1 \leq i \leq N-2)$ such that $A_i+A_{i+1}+A_{i+2}$ is even. Then, rearrange $A_i$, $A_{i+1}$, $A_{i+2}$ as you like.
Determine whether it is possible to make $A$ equal $B$.
输入格式
The input is given from Standard Input in the following format:
>$N$
$A_1$ $A_2$ $\dots$ $A_N$
$B_1$ $B_2$ $\dots$ $B_N$
#### Constraints
- $3 \leq N \leq 2 \times 10^5$
- $1 \leq A_i, B_i \leq 2 \times 10^5$
- All values in the input are integers.