We have a tree with $N$ vertices numbered $1, 2, \dots, N$.
The $i$\-th edge $(1 \leq i \leq N - 1)$ connects Vertex $u_i$ and Vertex $v_i$ and has a weight $w_i$.
For different vertices $u$ and $v$, let $f(u, v)$ be the greatest weight of an edge contained in the shortest path from Vertex $u$ to Vertex $v$.
Find $\displaystyle \sum_{i = 1}^{N - 1} \sum_{j = i + 1}^N f(i, j)$.
输入格式
Input is given from Standard Input in the following format:
>$N$\
>$u_1$ $v_1$ $w_1$\
>$\vdots$\
>$u_{N - 1}$ $v_{N - 1}$ $w_{N - 1}$
#### Constraints
- $2 \leq N \leq 10^5$
- $1 \leq u_i, v_i \leq N$
- $1 \leq w_i \leq 10^7$
- The given graph is a tree.
- All values in input are integers.
输出格式
Print the answer.
样例输入 #1
3
1 2 10
2 3 20
样例输出 #1
50
样例输入 #2
5
1 2 1
2 3 2
4 2 5
3 5 14
样例输出 #2
76
提示
***For Sample #1:***
We have $f(1, 2) = 10$, $f(2, 3) = 20$, and $f(1, 3) = 20$, so we should print their sum, or $50$.