For an integer $n$ not less than $0$, let us define $f(n)$ as follows:
- $f(n) = 1$ (if $n \lt 2$)
- $f(n) = n f(n-2)$ (if $n \geq 2$)
Given is an integer $N$. Find the number of trailing zeros in the decimal notation of $f(N)$.
输入格式
Input is given from Standard Input in the following format:
>$N$
#### Constraints
- $0 \leq N \leq 10^{18}$
输出格式
Print the number of trailing zeros in the decimal notation of $f(N)$.
样例输入 #1
12
样例输出 #1
1
样例输入 #2
5
样例输出 #2
0
样例输入 #3
1000000000000000000
样例输出 #3
124999999999999995
提示
***For Sample #1:***
$f(12) = 12 × 10 × 8 × 6 × 4 × 2 = 46080$, which has one trailing zero.
***For Sample #2:***
$f(5) = 5 × 3 × 1 = 15$, which has no trailing zeros.