题目描述
You are given a permutation $P = (P_1, \dots, P_N)$ of $(1, \dots, N)$, where $(P_1, \dots, P_N) \neq (1, \dots, N)$.
Assume that $P$ is the $K$\-th lexicographically smallest among all permutations of $(1 \dots, N)$. Find the $(K-1)$\-th lexicographically smallest permutation.
What are permutations?
A **permutation** of $(1, \dots, N)$ is an arrangement of $(1, \dots, N)$ into a sequence.
What is lexicographical order?
For sequences of length $N$, $A = (A_1, \dots, A_N)$ and $B = (B_1, \dots, B_N)$, $A$ is said to be **strictly lexicographically smaller** than $B$ if and only if there is an integer $1 \leq i \leq N$ that satisfies both of the following.
- $(A_{1},\ldots,A_{i-1}) = (B_1,\ldots,B_{i-1}).$
- $A_i \lt B_i$.
输入格式
The input is given from Standard Input in the following format:
>$N$\
>$P_1$ $\ldots$ $P_N$
#### Constraints
- $2 \leq N \leq 100$
- $1 \leq P_i \leq N \, (1 \leq i \leq N)$
- $P_i \neq P_j \, (i \neq j)$
- $(P_1, \dots, P_N) \neq (1, \dots, N)$
- All values in the input are integers.
输出格式
Let $Q = (Q_1, \dots, Q_N)$ be the sought permutation. Print $Q_1, \dots, Q_N$ in a single line in this order, separated by spaces.
样例输入 #1
3 3 1 2
样例输出 #1
2 3 1
样例输入 #2
10 9 8 6 5 10 3 1 2 4 7
样例输出 #2
9 8 6 5 10 2 7 4 3 1
提示
***For Sample #1:***
Here are the permutations of $(1, 2, 3)$ in ascending lexicographical order.
- $(1, 2, 3)$
- $(1, 3, 2)$
- $(2, 1, 3)$
- $(2, 3, 1)$
- $(3, 1, 2)$
- $(3, 2, 1)$
Therefore, $P = (3, 1, 2)$ is the fifth smallest, so the sought permutation, which is the fourth smallest $(5 - 1 = 4)$, is $(2, 3, 1)$.
来源
AtCoder [ABC276C]