Given are sequences of $N$ integers each: $A = (A_1, \dots, A_N)$ and $B = (B_1, \dots, B_N)$. Find the number of non-empty subsets $S$ of $\{1,2,\ldots,N\}$ that satisfy the following condition:
- $\max_{i \in S} A_i \geq \sum_{i \in S} B_i$.
Since the count can be enormous, print it modulo $998244353$.
输入格式
Input is given from Standard Input in the following format:
>$N$\
>$A_1$ $A_2$ $\ldots$ $A_N$\
>$B_1$ $B_2$ $\ldots$ $B_N$
#### Constraints
- $1 \leq N \leq 5000$
- $1 \leq A_i,B_i \leq 5000$
- All values in input are integers.
输出格式
Print the number of subsets $S$ that satisfy the condition in the Problem Statement, modulo $998244353$.
***For Sample #1:***
$\{1,2,\ldots,N\}$ has three subsets: $\{1\}$, $\{2\}$, and $\{1,2\}$.
- For $S=\{1\}$, we have $\max_{i \in S} A_i=3$ and $\sum_{i \in S} B_i=1$.
- For $S=\{2\}$, we have $\max_{i \in S} A_i=1$ and $\sum_{i \in S} B_i=2$.
- For $S=\{1,2\}$, we have $\max_{i \in S} A_i=3$ and $\sum_{i \in S} B_i=3$.
Thus, the condition $\max_{i \in S} A_i \geq \sum_{i \in S} B_i$ is satisfied by two subsets: $\{1\}$ and $\{1,2\}$.
***For Sample #2:***
There may be no subsets that satisfy the condition.