题目描述
We have a sequence $A=(A_1,A_2,\dots,A_N)$ of length $N$. Initially, all the terms are $0$.
Using an integer $K$ given in the input, we define a function $f(A)$ as follows:
- Let $B$ be the sequence obtained by sorting $A$ in descending order (so that it becomes monotonically non-increasing).
- Then, let $f(A)=B_1 + B_2 + \dots + B_K$.
We consider applying $Q$ updates on this sequence.
Apply the following operation on the sequence $A$ for $i=1,2,\dots,Q$ in this order, and print the value $f(A)$ at that point after each update.
- Change $A_{X_i}$ to $Y_i$.
输入格式
The input is given from Standard Input in the following format:
>$N$ $K$ $Q$\
>$X_1$ $Y_1$\
>$X_2$ $Y_2$\
>$\vdots$\
>$X_Q$ $Y_Q$
#### Constraints
- All input values are integers.
- $1 \le K \le N \le 5 \times 10^5$
- $1 \le Q \le 5 \times 10^5$
- $1 \le X_i \le N$
- $0 \le Y_i \le 10^9$
输出格式
Print $Q$ lines in total. The $i$\-th line should contain the value $f(A)$ as an integer when the $i$\-th update has ended.
样例输入 #1
4 2 10 1 5 2 1 3 3 4 2 2 10 1 0 4 0 3 1 2 0 3 0
样例输出 #1
5 6 8 8 15 13 13 11 1 0
提示
***For Sample #1:***
In this input, $N=4$ and $K=2$. $Q=10$ updates are applied.
- The $1$\-st update makes $A=(5, 0,0,0)$. Now, $f(A)=5$.
- The $2$\-nd update makes $A=(5, 1,0,0)$. Now, $f(A)=6$.
- The $3$\-rd update makes $A=(5, 1,3,0)$. Now, $f(A)=8$.
- The $4$\-th update makes $A=(5, 1,3,2)$. Now, $f(A)=8$.
- The $5$\-th update makes $A=(5,10,3,2)$. Now, $f(A)=15$.
- The $6$\-th update makes $A=(0,10,3,2)$. Now, $f(A)=13$.
- The $7$\-th update makes $A=(0,10,3,0)$. Now, $f(A)=13$.
- The $8$\-th update makes $A=(0,10,1,0)$. Now, $f(A)=11$.
- The $9$\-th update makes $A=(0, 0,1,0)$. Now, $f(A)=1$.
- The $10$\-th update makes $A=(0, 0,0,0)$. Now, $f(A)=0$.
来源
AtCoder [ABC306E]