题目描述
You are given a sequence $A=(A_0,A_1,\dots,A_{63})$ of length $64$ consisting of $0$ and $1$.
Find $A_0 2^0 + A_1 2^1 + \dots + A_{63} 2^{63}$.
输入格式
The input is given from Standard Input in the following format:
>$A_0$ $A_1$ $\dots$ $A_{63}$
#### Constraints
- $A_i$ is $0$ or $1$.
输出格式
Print the answer as an integer.
样例输入 #1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
样例输入 #2
1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
样例输出 #2
766067858140017173
提示
***For Sample #1:***
$A_0 2^0 + A_1 2^1 + \dots + A_{63} 2^{63} = 2^0 + 2^2 + 2^3 = 13$.