Takahashi has a secret integer sequence $a$. You know that the length of $a$ is $N$.
You want to guess the contents of $a$. He has promised to give you the following $Q$ additional pieces of information.
- The $i$-th information: the value $a_{l_i} + a_{l_i+1} + \dots + a_{r_i}$.
Is it possible to determine the sum of all elements in $a$, $a_1 + a_2 + \dots + a_N$, if the $Q$ pieces of promised information are given?
输入格式
Input is given from Standard Input in the following format:
> $N \quad Q$\
> $l_1 \quad r_1$\
> $l_2 \quad r_2$\
> $\vdots$\
> $l_Q \quad r_Q$
#### Constraints
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq Q \leq \min(2 \times 10^5, \frac{N(N+1)}{2})$
- $1 \leq l_i \leq r_i \leq N$
- $(l_i, r_i)\neq(l_j, r_j)$ $(i \neq j)$
- All values in input are integers.
输出格式
If it is possible to determine the sum of all elements in $a$, print `Yes`; otherwise, print `No`.
样例输入 #1
3 3
1 2
2 3
2 2
样例输出 #1
Yes
样例输入 #2
4 3
1 3
1 2
2 3
样例输出 #2
No
样例输入 #3
4 4
1 1
2 2
3 3
1 4
样例输出 #3
Yes
提示
***For Sample #1:***
From the first and second information, we can find the value $a_1 + a_2 + a_2 + a_3$. By subtracting the value of $a_2$ from it, we can determine the value $a_1 + a_2 + a_3$.
***For Sample #2:***
We can determine the sum of the first $3$ elements of $a$, but not the sum of all elements.
***For Sample #3:***
The fourth information directly gives us the sum of all elements.